2023-06-14 10:00 浏览量:1438
数据资产管理是一项长期性的、体系化的工作,为保证各项数据资产管理活动有效开展,统筹推动数据资产管理工作顺利进行,战略规划、组织架构、制度体系、平台工具、长效机制等保障措施变得极为重要。
战略是组织长期发展规划及资源配置的一系列行动,对于组织持续稳定发展具有重要的指导意义。在数字时代下,数据战略已成为组织开展精益数据资产管理的基础,是数据资产管理工作长期高效开展的“指南针”。战略管理是指通过对数据战略进行规划、执行、评估,确立数据资产管理的中长期目标和管理活动优先级,明确需要的资源投入总量和资源分配机制,并使数据战略始终契合组织的业务战略。
图 1 数据战略管理流程与要点
战略规划是战略管理的首要环节和基础性工作,是数据资产管理的指导蓝图。通过评估当前组织数据资产管理能力,结合组织发展规划和IT发展规划,明确数据战略规划的中长期和短期发展目标、管理原则、主要活动,识别重要业务领域、数据范围和活动优先级,确认投入的资源规模。战略执行是战略管理的中间环节,是战略规划落地的有效保障。战略执行通过对战略规划进行拆解,制定阶段性提升计划与实施路线,明确各项活动参与团队,并根据实际执行情况及时调整短期战略规划。战略评估是优化组织数据战略管理、提升数据战略指导作用的必要手段。通过从目标完成率、价值收益率、成本合理性等维度评估战略内容、管理过程,提升战略规划和战略执行有效性。例如,中国联通聚焦公司新战略、新定位、新赛道,全面提速数据治理,促进数据要素流动和效能提升,通过外部形势研判和内部资源起底,打造适配公司数字化转型的企业级数据治理体系,形成数据治理战略目标、规划体系、重点举措和阶段目标,强化统筹,为规划期任务执行和资源配置提供评估准则,确保规划目标达成。
建立全方位、跨部门、跨层级的数据资产管理组织架构,是实施组织级统一化、专业化数据资产管理的基础,是数据资产管理责任落实的保障。
一般来说,数据资产管理组织架构包括决策层、组织协调层、数据资产管理层、工作执行层四个层级。决策层作为数据决策方,由组织CIO或CDO担任,负责制定数据资产管理决策、战略和考核机制。组织协调层由虚拟的数据资产管理委员会承担,负责统筹管理和协调资源,细化数据资产管理的考核指标。数据资产管理层由数据资产管理办公室承担,作为数据资产管理的主要实体管理部门,负责构建和维护组织级架构(包括业务架构、数据架构、IT架构),制定数据资产管理制度体系和长效机制,定期开展数据资产管理检查与总结,并向组织协调成和决策层汇报。工作执行层由业务部门和IT部门共同承担,负责在数据项目中落实数据资产管理工作,与数据资产管理层协同参与各项活动。
由于数据产生于业务,数据流转依赖于业务,因此,数据认责机制对于统筹协调数据资产管理、加强各方对于数据资产管理的认可具有较强的积极作用。例如,平安银行建立了以数据类别(基础数据、指标数据、外部数据等)为基础的数据认责原则,明确了数据采集者、数据加工者、数据使用者等不同角色在数据生命周期各环节的责任,建立数据认责矩阵,并将数据认责机制与考评激励措施相结合,进一步确保数据资产管理相关方的“责权利”对等;在数据应用层面,依据认责原则搭建五级认责体系,分别为“归口管理部门”、“报表主管部门”、“业务场景主管部门”、“字段主管部门”、“字段协管部门”,解决了数据在应用层面职责划分不清晰的痛点,有效支撑了数据口径、数据规范等数据治理层面管理措施的落地执行。
此外,数据资产管理对于人才的复合型能力提出了更高的要求。首先,数据资产管理人员应具备良好的数据架构、数据安全、法律法规相关技能,涉及数据架构师、数据安全人员、数据合规人员等角色。其次,数据资产管理人员应具备较高的业务理解能力,涉及数据标准管理员、数据质量管理员、主数据管理员等角色。再次,数据资产管理人员需具备基本的市场洞察与运营能力,与数据生态多方、数据使用者建立良好的合作互动机制。最后,由于数据资产在交易市场中的产品设计、定价规则、流通技术需求增多,数据资产管理人员需具备一定的产品经理、金融学、经济学、密码学知识。
表 1 数据资产管理复合人才能力表
数据资产管理制度体系通常分层次设计,依据管理的颗粒度,制度体系可划分为组织级数据资产管理总体规定、管理办法、实施细则和操作规范四个层次。基本内容如下:
● 总体规定从数据资产管理决策层和组织协调层视角出发,包含数据战略、角色职责、认责体系等,阐述数据资产管理的目标、组织、责任等;
● 管理办法是从数据资产管理层视角出发,规定数据资产管理各活动职能的管理目标、管理原则、管理流程、监督考核、评估优化等;
● 实施细则是从数据资产管理层和数据资产管理执行层的视角出发,围绕管理办法相关要求,明确各项活动职能执行落实的标准、规范、流程等;
● 操作规范是从数据资产管理执行层的视角出发,依据实施细则,进一步明确各项工作需遵循的工作规程、操作手册或模板类文件等。
图 2 数据资产管理制度体系架构
业务案例从实际项目出发,为数据资产管理提供了实践视角,是对制度体系架构的有效补充。交通银行为响应理论本地化、实践策略化需求,在总体规定、管理办法的基础上,建立了“工作手册”机制,作为数据资产管理工作落地的重要抓手和关键突破口。工作手册覆盖数据资产管理多项活动职能,主要从各项活动实施的需求背景、方案策略、执行过程等方面着手,对自身实践项目进行客观陈述、深入分析,总结问题与经验。工作手册不仅沉淀为内部培训的实战材料,形成团队的共有知识和经验,更重要的是作为典型业务案例,对于长期指导和优化数据资产管理工作具有指导意义。
数据资产管理平台工具位于大数据平台上层,为各项数据资产管理活动职能的执行提供技术保障。
从管理视角出发,数据资产管理平台工具支持PDCA循环。规划环节,通过角色分配和权限管理落实数据认责体系,支持需求管理,以及对数据资产现状(包括数据资产规模、分布、可信度、安全性等)进行评估;执行环节,支持标准规范的新增、修改,以及数据开发、任务编排、任务运维等;检查环节,支持对数据模型一致性、标准规范应用程度、问题数据处理情况、数据安全响应结果等进行跟踪;改进环节,支持逐个标记问题并生成改进建议,统计检查数据,形成知识库,量化改进过程,实现闭环管理。
从开发视角出发,数据资产管理平台呈现一体化形式。通过打通数据模型管理、数据标准管理、数据质量管理、数据安全管理、元数据管理、数据开发相关平台工具,支持数据模型设计与开发遵循标准规范,实现数据质量源头管理,并对数据资产开发全流程进行监控,确保开发过程的流畅,提升开发过程的规范性。例如,中国联通构建了集约化数据治理平台,深入推进自上而下的企业治理体系建设,实现数据资产全量全域纳管,资产一点查询检索,一点治理运营,数据标准在线管理;支撑核心指标、标签、模型的血缘关系全链路溯源、智能化分析。同时自下而上夯实数据质量基础,推动数据质量管理、建模管理、主数据管理等各项能力的工具化建设,形成数据治理工具集,AI赋能数据治理质量和效率提升,促进企业数据标准化、规范化,为企业数字化转型提供支撑。
在数据战略规划、组织架构和制度体系的基础上,培训宣贯、绩效考核、激励机制、审计机制、数据文化培养等长效机制,是数据资产管理活动持续高效运行的重要保障。
图 3 数据资产管理长效机制
培训宣贯是数据资产管理理论落地实践、流程执行运作的基础。通过安排员工参与数据资产管理培训、课程,加深行业内、外部单位优秀经验沟通与交流,组织开展案例分享,促进员工提升技术水平。绩效考核是确保数据资产管理各项工作落实到位的关键举措。建立数据资产管理考核机制,开展常态化、全面性问题巡检,将问题处理结果与员工薪酬关联,确保数据认责体系的有效执行。激励机制是提升组织数据资产管理部门工作积极性,推动数据资产管理良性发展的重要手段。建立员工职业发展通道,设立数据资产管理相关奖项,将数据资产管理纳入现有晋升、薪酬、职位资格等体系范畴。审计机制是保障数据资产管按既定规划和规范执行的有效方式。组建审计团队(由审计部门、监管部门牵头,数据资产管理部门、技术部门、业务部门参与),引入第三方审计机构,依托相关审计平台,对岗位职责、制度体系、管理活动开展审计。数据文化是组织开展数据资产管理的核心价值观和最终驱动力。优化数据服务方式,降低数据资产管理参与门槛,开展多类型数据技能培训和比赛,加深员工的数据认识,提升员工的数据兴趣。
本文节选自中国信通院于第五届“数据资产管理大会”上发布的《数据资产管理实践白皮书(6.0版)》。
来源:大数据技术标准推进委员会
热门文章