最近,龙石数据在为很多企业提供免费调研和数据治理方案时发现,无论是中小企业还是500强企业,都对数字化转型非常迷茫和焦虑。 结论是:大多数企业不适合全面推进数字化转型,不能被口号给骗了,动不动就要智能化升级,还没走稳就想跑。 要知道华为在数字化转型上的投入是销售收入的2%(P90)。 对于中小企业,在缺乏整体战略规划和强力组织支撑的情况下,建议根据自身情况,从主业务流程贯通、跨部门数据共享、核心业务指标监测,以及数字化人才培养等方面小步快跑式的缓慢推进数字化转型,任正非讲慢就是快(P143)。 推荐大家看看华为原CIO周良军先生在《华为数字化转型》一书中总结的“钻石"模型。 在这个模型中,下面的“三力"讲的是数字化转型的“道",上面的”三驱"讲的是数字化转型的“术”。 在这里简单介绍一下这本书里的金句。 战略力方面:华为早在90年代就把数字化转型作为公司战略核心,也只有把数字化转型作为战略核心,数字化转型才有用武之地(P36)。 数字领导力方面:一把手的深度参与是数字化转型成功的前提,如果数字化转型失败,那么问题一定出在前三排,根因都在主席台(P62)。 变革力方面:数字化转型是一个复杂的管理变革工程,从战略规划到执行落地,关键不在于数字化,而在于转型变革。而变革的本质是利益再分配(P110)。 流程驱动的数字化转型是实现"以客户为中心"的端到端业务贯通,贯通流程的目标只有两个:一是多打粮食,也就是提升业绩;二是增加土壤肥力,也就是提升组织能力(P149)。 数据驱动的数字化转型主要任务是提升核心数据质量,实现数据跨部门共享,支撑业务洞察和决策分析(P204)。 智能驱动的数字化转型主要包括业务场景智能、业务决策智能、人际协作智能、这是数字化转型的高级目标(P241)。
2025-04-09 10:56 57
——当智能体与流程融合,效率革命正在重塑商业规则 在数字化浪潮席卷全球的今天,人工智能(AI)已从实验室走向生产线,从单点工具进化为重塑商业逻辑的“认知中枢”。其中,AI工作流正以“化繁为简”的革命性力量,成为企业降本增效、创新突围的核心引擎。它不仅是技术的迭代,更是组织形态的进化——通过将复杂任务拆解为可迭代、可优化的智能流程,让企业从“经验驱动”迈向“数据驱动”,从“人力密集”转向“智能密集”。 一、为什么AI工作流如此重要? 1. 破解效率黑洞 传统企业常陷入“流程繁琐、响应滞后”的泥潭。以制造业为例,一份采购订单处理需人工录入数据、比对价格、逐级审批,单张成本高达38元、耗时4小时。而AI工作流通过自动化抓取、智能比价、动态审批,将成本降至6元/单,效率提升9倍。这种“感知-决策-执行”的闭环系统,让企业像精密仪器般高效运转。 2. 应对复杂挑战 在医疗、金融等高风险领域,AI工作流展现出不可替代的价值。某保险公司利用AI工作流实时分析交易数据,欺诈识别准确率达98%,坏账率却从2.3%降至1.7%。其核心在于多智能体协作:风险评估模型、规则引擎、实时监控系统协同作战,将复杂决策分解为可验证的模块化任务。 3. 释放人力潜能 某服装品牌通过AI工作流将设计打样周期从45天压缩至7天,某保险公司理赔审核人员从200人减至30人却处理量翻倍。这不是简单的裁员,而是将员工从重复性劳动中解放,转向更具创造性的战略决策与客户互动。 二、AI工作流如何解决业务痛点? 1. 标准化与灵活性并存 传统工作流依赖静态规则,难以适应动态市场。AI工作流通过动态调整机制,如电商企业实时分析销售与库存数据,自动优化补货路径;制造业根据设备传感器预测故障,提前7天安排检修。这种“边运行边优化”的特性,让流程始终贴近业务需求。 2. 多维度降本增效 • 显性成本:某连锁酒店改造发票开具流程后,日均处理量800次,节省6个全职岗位。 • 隐性成本:某政府单位政务热线工单分类准确率从68%提升至94%,派单时间从15分钟缩短至实时完成。 • 质量提升:AI质检流水线使汽车零部件工厂问题发现速度提升6倍,客户投诉率下降43%。 3. 构建竞争壁垒 字节跳动、腾讯等巨头押注AI工作流平台,教育企业通过“虚拟班主任”实时跟踪学习进度,响应速度提升300%;短视频创作者用工作流一键生成爆款内容,效率提升10倍。这种“智能化业务系统”正成为企业差异化竞争的关键。 三、企业如何构建自己的AI工作流 1、需求分析与流程拆解 1). 明确业务痛点与目标 • 需优先识别高频、高成本或易出错的流程(如文档处理、多系统协作、客户响应)。例如,某制造企业通过分析发现采购订单处理耗时占整体流程的60%,将其列为改造重点。 • 制定量化目标,如“将处理时间缩短70%”或“错误率降低至0.5%以下”。 2). 流程可视化与节点拆分 • 使用流程挖掘技术还原实际执行路径,识别冗余环节(如重复审批、人工数据录入)。某物流企业通过日志分析发现32%的运单存在重复审核,取消14个无效节点后效率提升40%。 • 将复杂流程分解为可独立运行的子任务(例如“合同审核”可拆分为“信息提取→合规检查→风险标注”)。 2、技术选型与架构设计 1). 选择适配的AI工具与平台 • 基础技术层:根据任务类型选择NLP(如客户咨询分类)、机器学习(如风险预测)或计算机视觉(如质检图像分析)。 • 编排工具:采用工作流引擎(如Zapier、UiPath)或专用框架(如LangGraph)实现任务顺序控制和条件路由。例如,通过LangGraph可构建“分类→实体提取→摘要生成”的文本处理流水线。 2). 构建“感知-决策-执行”闭环系统 • 感知层:集成多模态输入(文本、语音、图像)并解析实时数据流。 • 决策层:结合规则引擎与机器学习模型动态调整策略,如银行信贷审批中AI根据实时数据优化风险评估阈值。 • 执行层:通过API或RPA工具连接现有系统,实现自动化操作(如ERP数据同步)。 3、数据治理与模型开发 1). 数据准备与质量管控 • 收集历史数据并清洗标注,建立标准化数据集。某金融机构通过清洗10万份合同数据,使AI模型准确率从85%提升至99%。 • 构建动态更新的知识库,支持语义检索和自动摘要,例如法律行业将判例库与AI结合实现智能法律咨询。 2). 模型训练与优化 • 采用迁移学习加速训练,如在制造业中复用已有质检模型参数,仅需20%新数据即可适配新产线。 • 建立反馈机制,通过用户行为数据持续迭代模型。某电商客服系统每月更新意图识别模型,响应准确率季度提升12%。 4、实施落地与迭代管理 1). 分阶段验证与扩展 • 最小化验证(MVP):选择单一部门或流程试点,例如某政府机构在政务热线分类任务中实现94%准确率后推广至全系统。 • 规模化部署:按“部门→事业部→集团”路径扩展,某药企6个月内将质检流程改造经验复用到采购、物流等环节。 2). 监控与持续优化 • 建立双维度看板: • 效率看板:追踪处理时长、人力节省等指标。 • 业务看板:监控客户满意度、合规率等结果。 • 动态调整规则库,如保险公司根据市场变化每月更新风控模型的权重参数。 5、组织协同与变革管理 1). 跨部门协作机制 • 成立由业务、IT和数据科学家组成的联合团队,确保技术方案与业务需求对齐。 • 制定标准化文档和API接口,降低系统耦合度。某零售企业通过统一数据中台,使库存预测系统与门店销售系统无缝对接。 2). 员工培训与文化转型 • 开展分层培训:一线员工掌握工具操作,管理者学习流程优化方法论。 • 设计激励机制,如将AI节省的人力成本按比例奖励给流程改进团队。 典型行业案例参考 1. 制造业:某汽车配件厂用AI自动化处理采购订单,单张处理成本从38元降至6元,年节省436万元。 2. 金融业:城商行通过AI信贷审批模型,将小额贷款放款时间从3天压缩至8分钟。 3. 医疗行业:医院利用NLP自动解析病历,医生诊断效率提升50%。 四、AI工作流与业务的深度融合 1. 客户服务智能化 智能客服系统通过意图识别、知识库检索、多轮对话等模块,将85%的咨询问题自动化处理,同时精准识别复杂需求并转接人工。某电商企业应用后,客户满意度提升25%,人力成本降低80%。 2. 供应链弹性重构 AI工作流实时分析历史销售、天气、竞品数据,动态调整生产计划与物流路径。某鞋服品牌通过该技术,缺货率从12%降至3%,滞销库存减少35%。 3. 战略决策赋能 舆情监测系统自动抓取社交媒体负面信息,量化品牌情感变化并生成危机应对建议;金融企业利用AI模拟市场波动,辅助投资策略制定。 让AI工作流成为企业的“第二增长曲线” 从单点自动化到全流程重构,AI工作流正在改写商业世界的底层逻辑。它不是冰冷的工具,而是赋予企业“思考”与“进化”能力的数字伙伴。正如吴恩达所言:“AI工作流的价值可能超过下一代基础模型”,其核心在于将复杂任务转化为可迭代、可优化的智能生命体。 • “AI工作流不是替代人,而是让人更像人。” • “效率战争中的核爆级工具,正在重新定义企业的生存法则。” 当企业真正理解并善用AI工作流,便能在这场数字化革命中,从“跟跑者”蜕变为“领跑者”。未来已来,你准备好了吗? 来源(公众号):AI数据推进器
2025-04-01 18:59 151
当大模型热潮退去,数据中台的“真金白银”才浮出水面 2025年,企业追逐大模型的浪潮已从“技术尝鲜”转向“价值落地”。然而,许多企业发现,大模型的表现并不如预期:回答不专业、业务场景难适配、数据隐私隐患频发……问题的核心,往往不是模型本身,而是背后的数据质量与治理能力。正如复旦大学肖仰华教授所言:“大部分数据仍沉睡在服务器,尚未转化为真正的资产”。 数据中台——这个曾被贴上“过气”标签的概念,却在大模型落地困境中重新成为焦点。它不是简单的数据仓库,而是通过标准化、智能化、场景化的数据治理体系,让数据真正流动、融合、增值的“隐形引擎”。本文将结合行业实践,揭秘数据中台如何成为大模型时代的胜负手。 一、数据中台:从“沉睡数据”到“黄金燃料”的炼金术 大模型的训练如同火箭发射,燃料的质量直接决定升空高度。但现实中,企业数据往往像未经提炼的原油——分散、混杂、价值密度低。以下是数据中台如何通过“三步炼金术”,将原始数据转化为驱动大模型的黄金燃料: 1. 破除数据孤岛:从“碎片化”到“全域贯通” 行业痛点:某头部家电企业曾面临典型困境——线下门店POS系统、电商平台订单数据、售后客服工单分散在12个独立系统中。市场部需要分析“促销活动对复购率的影响”时,需协调3个部门导出数据,耗时两周,最终因数据口径不一致导致结论失真。 数据中台解法: • 统一数据资产目录:建立“数据超市”,将分散数据按业务主题(客户、商品、渠道)分类,形成标准化的数据标签体系。例如,将“客户”主题统一为“基础信息(姓名、联系方式)、消费行为(客单价、复购周期)、服务反馈(投诉记录、满意度)”三层结构。 • 动态血缘图谱:某物流企业通过数据中台构建“字段级血缘关系”,可追溯“物流时效”指标从原始运单数据到聚合计算的完整链路,确保指标一致性。当某区域配送异常时,系统自动定位问题源(如分拣中心设备故障导致数据断点)。 技术细节: • 采用Flink实时计算引擎,实现跨系统数据秒级同步; • 知识图谱技术自动识别数据关联(如发现“客户手机号”与“售后工单联系人”字段实际指向同一实体)。 2. 数据清洗:从“脏乱差”到“高纯度” 典型案例:某银行信用卡中心发现,客户填写的“年收入”字段中,存在“30万”、“30万元”、“30W”等12种表述,甚至有用户误填为手机号。传统规则引擎仅能覆盖60%异常数据,剩余需人工处理,成本高昂。 数据中台的智能化升级: • 大模型驱动的语义清洗: • 使用LLM理解非结构化数据:将客服通话录音转为文本后,通过Prompt工程提取关键信息(如投诉原因分类); • 自动纠错:识别“年收入:150万(实际应为15万)”类错误,准确率达92%(某金融科技公司实测数据)。 • 多模态数据治理: • 某零售企业用CV模型解析门店监控视频,自动生成“客流量高峰时段”数据,与POS系统销售数据关联,优化排班策略。 落地工具: • 开源框架:Apache Griffin(数据质量监测)、Great Expectations(自动化校验规则生成); • 商业化方案:阿里DataWorks智能数据建模、Databricks的Delta Live Tables。 3. 场景化重构:从“静态存储”到“动态燃料” 行业教训:某新能源汽车厂商曾投入千万构建数据湖,但业务部门反馈“数据很多却用不起来”——市场团队需要“不同温度区间下电池续航衰减率”分析时,发现所需传感器数据未被纳入采集范围。 数据中台的场景化能力: • 需求驱动的数据编织(Data Fabric): • 某医疗集团通过数据中台,将HIS系统、电子病历、检验设备数据按“患者诊疗全路径”动态关联。当研究“糖尿病患者术后感染率”时,自动关联血糖监测数据、用药记录、护理操作日志,将分析准备时间从3周缩短至2小时。 • 智能指标平台: • 某快消品牌定义“新品渗透率=购买新品客户数/活跃客户数”,数据中台自动解析指标逻辑,动态关联商城订单、会员数据,实时生成可视化看板。 数据中台的终极目标不是建“图书馆”,而是打造“变形金刚”——能根据业务需求,随时组装出所需的数据武器。 二、大模型×数据中台:1+1>2的协同效应 大模型与数据中台的关系,犹如大脑与神经系统的配合:数据中台负责感知和传递信息,大模型负责决策与创造。两者的深度协同,正在重塑企业智能化范式: 1. 正向循环:数据治理与模型进化的“飞轮效应” 飞轮第一环:高质量数据喂养大模型 • 某国有银行信用卡风控案例: • 原始数据:2.3亿条交易记录中,27%存在商户名称歧义(如“XX科技公司”实际为赌博网站); • 数据中台治理:通过NLP模型清洗商户名称,关联工商信息库,打标高风险商户; • 模型效果:基于清洗后数据训练的反欺诈模型,误报率下降44%,每年减少损失超6亿元。 飞轮第二环:大模型反哺数据治理 • 智能数据标注: • 某自动驾驶公司用大模型预标注道路图像,人工仅需修正5%的异常帧,标注效率提升18倍; • 主动学习(Active Learning):模型自动识别“遮挡严重”的困难样本,优先推送人工标注。 • 元数据自动化管理: • 某电商平台用LLM解析数据表注释,自动生成字段含义、取值范围等元数据,填补85%的元数据空白。 2. 场景革命:从“通用能力”到“业务智能体”案例深度剖析:大地保险“智能理赔顾问” • 业务挑战:车险理赔涉及定损员、修理厂、第三方鉴定等多方数据,传统流程平均耗时5.8天,客户投诉率高达23%。 • 解决方案: 1. 数据中台筑基: • 整合保单数据(车型、保额)、历史理赔记录(欺诈案例库)、修理厂资质数据; • 通过图数据库构建“人-车-修理厂”关联网络,识别高风险关联(如某修理厂频繁关联虚假事故)。 2. 大模型能力注入: • 训练行业专属模型“灵枢”,理解保险条款、维修工单、定损报告等专业文档; • 构建多智能体(Multi-Agent)系统: • 定损Agent:通过图片识别损伤部位,关联维修价格库,10秒生成初步报告; • 反欺诈Agent:比对历史案件模式,标记可疑案件(如相同车辆短期内多次出险)。 • 成效:理赔时效缩短至8小时,欺诈案件识别率提升37%,每年节省成本超4000万元。 3. 组织变革:从“技术黑箱”到“业务共舞” 某零售巨头的范式转型: • 旧模式:数据团队被动响应业务需求,开发一个“门店选址模型”需3个月,且业务方难以理解模型逻辑。 • 新范式: • 自然语言交互:区域经理用语音输入“帮我找未来半年华东区最适合开旗舰店的城市”,数据中台自动关联人口数据、竞品分布、交通规划等300+指标,大模型生成分析报告并推荐选址; • 可解释性增强:模型输出“建议杭州而非上海”时,同步展示关键依据(如上海核心商圈租金涨幅超30%,杭州亚运会带来流量红利); • 业务闭环:选址结果反馈至数据中台,持续优化模型预测准确率。 技术架构: • 三层架构: 1. 底层:数据中台提供清洗后的标准化数据; 2. 中间层:MoE架构大模型(如DeepSeek-R1)按场景调用专家模型; 3. 应用层:低代码平台供业务人员配置智能体工作流。当一线业务员能用自然语言指挥数据中台时,企业才真正完成了AI革命。 4. 行业级突破:从“单点应用”到“生态重塑” 医疗健康领域案例: • 数据挑战:某三甲医院积累的300TB医疗数据中,包含结构化电子病历、非结构化影像数据、时序性生命体征监测数据,难以统一利用。 • 协同解决方案: • 数据中台:构建“患者全息视图”,整合门诊记录、CT影像、基因组数据; • 大模型应用: • 辅助诊断:识别CT图像中的早期肺癌征象,提示医生关注微小结节; • 科研加速:自动解析海量文献,匹配临床试验方案与患者特征。 • 生态价值:医院联合药企、保险机构,在隐私计算框架下,实现“诊疗-研发-保险”数据闭环,将新药研发周期平均缩短15%。 数据中台与大模型的协同,本质是一场“数据文明”的进化: • 野蛮生长时代:数据是散落的矿石,模型是手工作坊; • 工业文明时代:数据中台如同炼钢厂,产出标准化“钢坯”; • 智能时代:大模型成为精密车床,将数据钢材加工为航天器件。 企业若想抵达AI赋能的彼岸,数据中台是必经的“钢铁丛林”——穿越它,才能让大模型的火箭真正升空。 没有数据中台的“底座”,大模型不过是空中楼阁;没有大模型的“大脑”,数据中台仅是沉默的矿藏。 三、未来已来:数据中台的三大进化方向 1. 轻量化与行业定制: • 如零一万物推出MoE架构模型Yi-Lightning,降低推理成本,适配制造业、金融等垂直场景; • 企业可通过微调(如DeepSeek-R1的SFT方案),让模型“更懂行”。 2. 自动化与低代码: • 数据清洗、标注、建模全流程AI化(如网页3中LLM自动修正日期格式); • 业务人员通过拖拽生成Agent,穿透核心业务流程。 3. 安全与合规增强: • 隐私计算、联邦学习保障数据安全(如大地保险的本地化推理方案); • 数据血缘追踪,满足金融、政务等领域强监管需求。 数据中台的“长期主义”大模型的热潮终会褪去,但数据价值的挖掘永无止境。正如肖仰华教授所言:“在大模型助力下,沉睡的数据资产将彻底激活”。企业若想在这场AI革命中胜出,需以数据中台为锚点,构建“数据-模型-场景”的飞轮:高质量数据滋养模型,精准模型反哺业务,业务反馈优化数据。 未来,没有“数据中台+大模型”双引擎的企业,或将如同燃油车面对特斯拉——即便引擎轰鸣,也难逃掉队的命运。 来源(公众号):AI数据推进器
2025-03-31 18:27 139
数据就像企业的体检报告,指标则是各项身体数值。 没有标准的指标体系,就像医生用着不同的测量标准,病人永远搞不清自己到底健康不健康。 让人头疼的是,很多企业的指标管理就处在这种"混乱"状态 - 指标口径不统一、定义模糊、质量难保障。更糟糕的是,随着AI时代的到来,数据量暴增,传统的指标管理方式已经力不从心。 如何破局?头部科技公司正在用AI重塑指标管理范式,开创性地将大模型、知识图谱、联邦学习等前沿技术注入指标标准化实践。 这场指标管理革命,正在改变企业的数据决策方式。 Data+AI打造智能时代的数据度量标尺 大数据时代,每一个企业都在积累海量数据。精准的数据指标就像一把测量的标尺,帮助企业看清自身发展状况。随着AI技术的发展,传统的指标管理方式正面临巨大挑战。首家使用ChatGPT的中国互联网公司百度,早在2020年就开始了指标管理变革。通过构建统一的指标平台,结合AI能力,实现了指标定义、生产、消费的全流程标准化。腾讯、阿里、字节跳动等科技巨头也都在积极探索AI驱动的指标标准化实践。 数据指标标准化的核心在于打通指标管理、生产、消费的全链路。通过AI技术赋能,可以实现指标的智能化管理。腾讯音乐团队利用大语言模型技术,构建了智能指标解析引擎。该引擎能够自动识别指标口径描述中的维度、度量、计算逻辑等要素,将非结构化的指标描述转化为标准化的指标定义。 阿里云数据中台团队开发的指标血缘分析系统,运用图神经网络技术,能够自动发现指标间的依赖关系。系统不仅可以追踪指标变更的影响范围,还能预测指标异常的传播路径,帮助运维团队快速定位问题。 字节跳动的指标质量保障体系融入了机器学习算法。通过分析历史数据波动规律,系统可以智能预警异常指标。同时,基于自然语言处理技术,系统能够自动生成指标异常分析报告,降低运维人员的分析成本。 美团外卖业务团队通过构建统一的指标查询引擎,实现了指标口径的一致性管控。引擎采用语义化DSL描述指标查询需求,通过AI模型辅助选择最优的查询路径,既保证了数据一致性,又提升了查询效率。 指标即服务 指标标准化不仅是技术问题,更需要配套强有力的治理机制。京东科技团队提出"指标即服务"的理念,将指标标准化提升到服务级别。他们构建了完整的指标生命周期管理体系,从指标定义、开发、验收到监控、治理的每个环节都融入了AI技术。 快手数据团队创新性地应用联邦学习技术,打造了跨部门的指标协同平台。各业务部门在保护数据隐私的前提下,实现指标定义的知识共享。平台通过知识图谱技术,建立业务概念与指标定义的映射关系,帮助不同团队达成指标认知的一致性。网易游戏的数据中台引入图数据库技术,构建了立体化的指标关系网络。通过可视化展示指标间的血缘关系、引用关系、影响关系,帮助分析师快速理解指标体系。该平台还集成了智能问答功能,分析师通过自然语言就能查询复杂的指标口径。 展望未来,随着大模型技术的成熟,指标管理将迎来新的变革。OpenAI最新发布的GPT-4已经展示出强大的数学推理能力,未来有望在指标口径解释、异常分析等场景发挥重要作用。国内的智谱AI、百川智能等公司也在积极探索大模型在数据分析领域的应用。 英伟达推出的GauGAN3模型开创了数据可视化新范式。通过自然语言描述就能生成专业的数据分析图表,让指标分析变得更加直观友好。这也预示着未来的指标管理平台将更加注重用户体验。 新一代实时数据库PolarDB-X展现出卓越的HTAP能力,为实时指标的标准化管理提供了技术基础。实时指标不同于离线指标,需要在保证实时性的同时,确保数据质量和一致性。这要求指标管理平台具备更强的实时计算和监控能力。 指标标准化是一个持续演进的过程,技术创新将不断注入新的活力。企业需要在保持敏锐度的同时,构建适合自身的指标管理体系。通过Data+AI的深度融合,让数据真正发挥价值,驱动业务增长。 来源(公众号):大数据AI智能圈
2025-03-28 17:30 124
根据龙石数据多年专注数据治理的经验来看,数据治理效果不好的原因有三个:不懂、不持续、缺人才,其中最重要的就是缺人才。 一、不懂,就会觉得难,以为采购一个平台,上一个项目就能解决所有的问题。其实,这个项目最多只能算是起了一个头。如果做得不好,反而让大家对数据治理失去了信心。所以,我们自己一定要懂,最起码懂个大概,知道我要实现什么短期效果,实现什么长期效果,简单点怎么做,完善一些又怎么做。 二、不持续,不持续的核心原因有两个:一是成本太高,二是自己缺思路;自己缺思路就会导致选择了不符合自身需求的方案,也就导致了投入与效果的错配,也就会感觉投入与产出的性价比不高,导致对数据治理失去信心。 三、缺人才,缺人才就会导致自己人不懂数据治理,没法选择一条适合自己的方案和路径,也就导致数据治理的不持续,没法发挥数据治理的应有效果。所以,人才是数据治理的根本。所以,对企业数字化转型来说,我认为提升数据治理的成效是治标,提升自己团队的数据治理能力才是治本。 所以,我们在服务客户时,最重要的工作就是帮客户和合作伙伴建立自己的数据治理能力。我们是从4个方面帮学员提升数据治理的能力的: 一是实战培训,就是我们准备好场景和模拟数据,让学员先自己根据文档来练习,对数据治理建立一个感观的认识,让我们不再畏惧它; 二是理论培训,我们的咨询专家会给学员讲讲数据治理的理论知识,包括元数据、数据标准、数据质量、数据安全、数据标签、数据指标等概念,让学员熟悉数据治理的理论; 三是实施方法培训,我们会根据我们的经验,系统化地教会学员怎么一步步地做好数据治理,包括怎么做调研,怎么建立数据制度,甚至怎么提升组织的数据意识,以及在遇到各种阻力时该怎么办; 四是考试认证,如果学员还想进一步提升,也可以选择DCMM和DAMA的系统化的培训,并且参加权威考试,拿到认证证书。 当然,整个培训过程中,我们会使用AI来对学习成果进行评估,会进行打分。所以,这个学习会比较严格,也会有些压力,需要大家认认真真地去学,才能学得扎实。 最后,如果你们单位做了数据治理,效果不太理想,或者做得很好,都欢迎与我们联系,我们可以一起总结失败教训和分享成功经验。
2025-03-27 13:31 71
现在提到数据治理,大家都觉得迷茫,行业里创造了太多的概念,弄得专业人士都说不清数据治理到底是个啥。 要让数据治理变得简单,可以从4个方面着手: 1、确定一个清晰的目标。 2、制定一个可行的机制。 3、找到一个简单的方法。 4、选择一个好用的工具。 目标和机制需要根据组织的情况来确定,这里不做赘述。 1.从方法上来讲,我们在19年将它定义为5个字,“理、采、存、管、用”: 理,就是弄清楚我们有哪些数据; 采,就是把分散的数据集中到一起; 存,就是把数据集中存储起来; 管,就是进行数据质量、数据标准和数据安全的管理; 用,就是通过数据标签、数据指标、数据共享、数据报表等方式将数据用起来。 目前,市场上大多数的数据治理项目只是做了“理、采、存、用”,也能将数据用起来,但如果不把管数也做起来,就不能建立数据治理的长效机制,无法统一标准、提升质量和保障安全,为持续用数保驾护航。 2.从工具上来讲,我们借鉴工厂流水线的方法来治理数据。例如针对新生入学这个场景,我们先确定数据来源,再创建数据模型,然后做数据归集、数据清洗和数据融合,同时,配套数据标准、数据安全和数据质量方面的保障,然后,再开发数据标签、数据指标和API接口,最后,建成主题库、可视化报表和业务系统。 这样一眼就可以看清楚数据治理的全部过程和数据成果,真正做到让数据好管好用,这也是龙石数据的愿景和使命。
2025-03-24 16:27 164
什么是数据治理?就算是从业了20多年的人,也真的很难用一两句话讲清楚。前几天和一位专家交流的时候,突然发现数据治理与粮食加工特别像! 数据也和粮食一样需要“收割、清理、储存、加工和防护”。下面这个表格中列出了数据治理和粮食加工的对应关系: 例如: 1.数据汇聚对应着粮食收割,把数据和粮食收上来。 2.数据清洗对应着粮食清理。 3.数据安全管理对应着粮食的防火、防潮、防鼠、防盗。 4.数据汇聚:从业务系统、传感器等渠道收集数据,类似于粮食收割,将粮食从田间收割上来。 5.数据清洗:对数据进行去重、转码、融合和标准化处理,类似于粮食清理,包括脱壳、晾晒和去除杂质。 6.数据标签:根据数据的属性和用途打标签,类似于粮食分类,按等级分为优质米、劣质米,按产地分为东北大米、泰国香米等。 7.数据仓库:将清洗后的数据存储到数据仓库中,类似于粮食存储,根据实际情况选择陶缸、地窖、棚仓或现代房仓进行存储。 8.质量管理:通过监控和修复数据问题,确保数据质量,类似于粮食质量监控,定期检查霉变、虫害等情况。 9.安全管理:对数据进行分级分类、访问控制、加密脱敏等保护措施,类似于粮食防护,包括防火、防潮、防鼠、防盗等。 10.数据开发:将原始数据转变为可用的数据资产,类似于粮食加工,将水稻脱壳成大米,小麦研磨成面粉。 11.数据利用:将加工后的数据用于决策分析、AI模型训练等,类似于粮食食用,将大米煮成米饭,面粉做成包子。 所以,粮食加工养活了人类,而数据治理则养活了AI,人类可以种粮食,AI可不可以种植数据,实现自给自足呢? 欢迎大家前来讨论、交流。
2025-03-21 18:31 107
DeepSeek这次为中国科技赢得了国际声誉,也用实际行动回应了漂亮国对中国的算力封锁。它证明了,AI的发展不仅仅依赖于算力,更依赖于算法创新和高效的数据治理。 今天,我想和大家分享两个关于DeepSeek(人工智能)与数据治理行业关系的思考。 最近很多朋友关心我们,问人工智能会不会颠覆我们数字治理行业?我认为不会。 AI不会去颠覆任何行业,它只是一个工具。一个强大的工具而已。我们没必要将它神化。 可以从四个方面来理解这件事。 第一,AI是效率工具。 它能够帮我们来提高我们数据治理的效率,甚至呢我们也可以用AI来驱动数据中台来干活。 第二,AI是智能工具。 它可以自动化的帮我们生成一些数据质量检验的规则,也可以帮我们自动生成一些数据分析的脚本,降低我们数据治理的技术门槛。 第三,AI的训练和微调都离不开高质量数据。 原来我们做数据治理是为人服务的,但是现在不一样,我们现在也可以为AI提供服务,AI是我们数据治理的新用户。 第四,数据治理是构建知识库的前提。 现在大家都在接入DeepSeek,使用DeepSeek来构建自己的私有知识库,但是只有加工好的数据哎,才能成为知识库。那么数据治理天然就是做这个的,所以我们现在也在接入DeepSeek和数据中台,研发我们的知识库开发工具,希望能够帮助大家更快的更高质量的来构建自己的知识库。等我们打磨好我们再分享给大家。 所以一句话总结,我认为AI与数据治理之间是一个互相赋能的关系,它不是谁在颠覆谁,是双向奔赴。
2025-03-18 10:14 167
热门文章